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We study the scaling properties of polymers in ad-dimensional medium with quenched defects that have
power law correlations;r 2a for large separationsr. This type of disorder is known to be relevant for magnetic
phase transitions. We find strong evidence that this is true also for the polymer case. Applying the field-
theoretical renormalization group approach we perform calculations both in a double expansion in«542d
andd542a up to the one-loop order and second in a fixed dimension (d53) approach up to the two-loop
approximation for different fixed values of the correlation parameter, 2<a<3. In the latter case the numerical
results need appropriate resummation. We find that the asymptotic behavior of self-avoiding walks in three
dimensions and long-range-correlated disorder is governed by a set of separate exponents. In particular, we
give estimates for then and g exponents as well as for the correction-to-scaling exponentv. The latter
exponent is also calculated for the generalm-vector model withm51,2,3.

DOI: 10.1103/PhysRevE.64.041102 PACS number~s!: 64.60.Fr, 61.41.1e, 64.60.Ak, 11.10.Gh
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I. INTRODUCTION

The influence of structural disorder on the critical beha
ior of various kinds of condensed matter remains one of
central problems in physics. In this paper, we are interes
in the scaling laws that govern the behavior of polymers
disordered media when the defects are correlated or be
to some porous or spongelike structure. Our main questio
interest will be: does a small amount of correlated quenc
structural defects in the medium induce changes to the
versal properties of a polymer macromolecule?

It is well established that the universal scaling propert
of long flexible polymer chains in a good solvent are p
fectly described within a model of self-avoiding walk
~SAWs! on aregular lattice @1#. The limit of SAWs with an
infinite number of steps may be mapped to a formalm→0
limit of the m-vector model at its critical point@2#. In par-
ticular, for the average square end-to-end distanceRe and the
number of configurationsZN of a SAW with N steps on a
regular lattice one finds in the asymptotic limitN→`,

^Re
2&;N2n, ZN;zNNg21, ~1!

wheren andg are the universal correlation length and su
ceptibility exponents for them50 model that only depend
on the space dimensionalityd andz is a nonuniversal fugac
ity. For d53 the exponents read@3# n50.588260.0011 and
g51.159660.0020; whereas ford52 exact valuesn53/4
andg543/32 are known@4#.
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The problem of SAWs onrandomly diluted lattices,
which may serve as a model of linear polymers in a poro
medium, has been the subject of intensive discussion@5–13#.
A recent review on SAW statistics on random lattices
given in Ref.@10#. The numerical results for these system
available from Monte Carlo simulations, exact enumerati
and analytical treatment also cover the nonuniversal pro
ties. Nonetheless, even apart from the numerical value
scaling exponents the question if a given form of disord
affects the scaling behavior has not been settled in gene

A frequently studied type of random lattice is the latti
that is diluted to the percolation threshold@10#. Here, one is
interested in the behavior of a SAW on the percolation cl
ter. Scaling laws~1! hold with exponents that differ from
their counterparts on a regular lattice atd52 andd53 @8,9#.
Apparently, this results from the fact that the percolati
cluster itself is characterized by a fractal dimension that d
fers fromd, the Euclidean one. Moreover, the scaling of t
averaged moments ofZN ~1! on the backbone of a percola
tion cluster possesses multifractal behavior@12#. In our
study, however, we address another type of disorder, w
the lattice is well above the percolation threshold. In th
case the dimension of the support does not change and
not cleara priori whether the SAW asymptotic exponents~1!
will be influenced.

We approach this question for the case of long-ran
correlated disorder using the connection between the sca
properties of polymers and magnets. So let us first turn
attention to the magnetic problem. While it is intuitive
clear that strong disorder destroys the magnetic orderin
much more subtle question is what happens at weak dilu
by a nonmagnetic component, i.e., well above the perc
tion threshold~weak disorder! @14#. It has been argued@15#
©2001 The American Physical Society02-1
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that the presence of a noncorrelated~or short-range-
correlated! quenched disorder has a nontrivial effect on t
critical behavior of magnetic systems, only if the speci
heat critical exponenta of the pure magnet is positive. Thi
statement is often called the Harris criterion. However, o
should be careful in applying this ‘‘naively’’ to the SAW
problem. Indeed, although the critical exponenta of a SAW
on the d53 dimensional pure lattice is positive@3# @a(d
53)50.23560.003#, a weak quenched short-rang
correlated disorder does not alter the SAW critical expone
This statement has been proven by Harris@7# and confirmed
later by renormalization group results@6#.

Note, that in the works mentioned above only uncor
lated quenched defects were investigated. In 1980s the m
of a disorderedd-dimensional system with so-called ‘‘ex
tended’’ structural defects@16,17# was developed. These de
fects are considered as quenched and correlated in a
space of«d dimensions, and randomly distributed in th
remainingd2«d dimensions. This model may be applied
small densities of defects. The integer values of«d have a
direct physical interpretation:«d50 corresponds to short
range-correlated pointlike defects, and the cases«d51,2 are
related, respectively, to lines and planes of impurities.
give an interpretation of noninteger values of«d , one may
consider patterns of extended defects like aggregation c
ters, and treat«d as the fractal dimension of these cluste
@18#. In this interpretation the defect patterns are frac
while the support of the system is the complement of t
fractal and will in general not be fractal itself. In Ref.@16#
the critical behavior of O(m) symmetric magnets with ex
tended defects with parallel orientation was investiga
evaluating the renormalization group equations by a dou
«542d,«d expansion. It was found that the scaling is a
fected by these kinds of defects and the critical expone
were calculated in this scheme. The static and dynamic c
cal properties ofm-component cubic-anisotropic system
with extended-defects were studied in the Refs.@19# using a
double «,«85«1«d expansion again finding a change
critical behavior when«d is increased.

In further work @20# attention concentrated on disorder
systems with ‘‘random-temperature’’ disorder, arising from
small density of impurities that cause random variations
the local transition temperatureTc(xW ). The fluctuations in
Tc(xW ) are characterized by a correlation function, that fa
off according to a power law:;x2a at large distancesx. It
was shown that in the presence of long-range-correlated
order the Harris criterion is modified: fora,d the disorder
is relevant, if the correlation length critical exponent of t
pure system obeysn,2/a. An m-vector model of this type
was evaluated using a renormalization group expansio
the parameters«542d,d542a up to the linear approxi-
mation. An additional renormalization group fixed point co
responding to the long-range-correlated disorder was fou
In the following we will denote this as the ‘‘LR’’ fixed point
The correlation-length exponent was evaluated in this lin
approximation asn52/a and it was argued that this scalin
relation is exact and also holds in higher order approxim
tion. However, this result was questioned recently in Re
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@21#, where the static and dynamic properties of thre
dimensional~3D! systems with long-range-correlated diso
der were studied in a renormalization group approach usin
two-loop approximation. There is an essential discrepa
between the latter results and those found from the«,d ex-
pansion. Nevertheless, it was qualitatively confirmed by b
approaches that long-range-correlated disorder leads
new universality class for these magnetic systems. Note,
the variablea is a global parameter: together with the spa
dimensiond and the number of componentsm of the order
parameter it fixes the universal values of the critical exp
nents.

While the influence of long-range-correlated disorder
the magnetic phase transition has been the subject of con
erable interest, the effect of long-range-correlated disor
on the scaling properties of polymers remains unclear an
generally not considered as settled. Here, we address
question of the asymptotic behavior of polymers in lon
range-correlated disorder with algebraically decaying co
lations @20#. While the linear approximation of the doubl
«,d expansion indicates qualitatively the existence of
long-range~LR! fixed point for polymers, it leads to un
physical quantitative results@13#. For this reason we presen
here an analysis of the two-loop approximation using
fixed a,d technique that leads to physically meaningful r
sults for the scaling behavior of polymers in the LR regim

Our paper is organized as follows: in the following Sec.
we present the model, in Sec. III the renormalization pro
dure is discussed and we reproduce the results of the«,d
expansion. In Sec. IV we apply resummation techniques
analyze the renormalization group functions in the two-lo
approximation and find that the asymptotic behavior of se
avoiding walks in a three-dimensional medium with lon
range-correlated disorder is governed by a new set of ex
nents. For the exponents we present quantitative estim
Section V concludes our study. Some additional informat
about the properties of magnetic phase transitions in syst
with long-range-correlated quenched disorder is presente
the appendix.

II. THE MODEL

To study the universal properties of polymers in poro
media with long-range-correlated quenched structural
fects, we turn our attention to the investigation of the app
priatem-vector model in the polymer limit. We consider th
model of anm-vector magnet, that is described by the fo
lowing Hamiltonian:

H5E ddxF1

2
$@m01dm0~x!#fW 21~¹W fW !2%1

u0

4!
~fW 2!2G ;

~2!

herefW is anm-component fieldfW 5$f1
•••fm%, m0 andu0

are the bare mass and the coupling of the undiluted magn
model,dm0(x) represents the quenched random-tempera
disorder, with

^^dm0~x!&&50,
2-2
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1

8
^^dm0~x!dm0~y!&&5g~ ux2yu!,

where ^^•••&& denotes an average over spatially homo
neous and isotropic quenched disorder. The form of the
correlation functiong(r ) is chosen to fall off with distance
according to a power law@20#

g~r !;r 2a ~3!

for large r, wherea is a constant.
We consider quenched disorder and average the free

ergy over different configurations of the disorder. To this e
we apply the replica method and construct an effect
Hamiltonian for the m-vector model with long-range
correlated disorder@20#,

Heff5 (
a51

n E ddxF1

2
~m0fW a

21~¹W fW a!2!1
u0

4!
~fW a

2 !2G
2 (

a,b51

n E ddxddyg~ ux2yu!fW a
2~x!fW b

2~y!. ~4!

Here, the replica interaction vertexg(r ) is the correlation
function given in Eq.~3!, Greek indices denote replicas, an
the replica limitn→0 is implied.

For smallk the Fourier-transformg̃(k) of g(r ) reads

g̃~k!;v01w0ukua2d. ~5!

Note, that in the case of random uncorrelated pointlike
fects the site-occupation correlation function formally rea
g(ux2yu);d(ux2yu), and its Fourier transform obeys

g̃~k!;v0 . ~6!

Comparing Eqs.~5! and ~6!, it is obvious that the case
g(r );r 2d corresponds to random uncorrelated pointlike d
order. Moreover, different integer values ofa correspond to
uncorrelated extended impurities of random orientations.
the correlation function in Eq.~3! with a5d21 describes
straight lines of impurities of random orientation where
random planes of impurities correspond@16# to a5d22. In
terms of the fractal interpretation given in the introductio
the general case corresponds to SAWs on thecomplementof
a fractal with dimensioned5d2a.

Writing Eq. ~4! in momentum space and taking Eq.~5!
into account, one obtains an effective Hamiltonian with th
bare couplingsu0 ,v0 ,w0. For a.d thew0 term is irrelevant
in the renormalization group sense and one obtains the e
tive Hamiltonian of the quenched diluted~uncorrelated!
m-vector model@22# with two couplingsu0 ,v0. Fora,d we
have, in addition to the momentum-independent couplin
the momentum dependent onew0ka2d. Note thatg̃(k) must
be positive being the Fourier image of the correlation fu
tion. This impliesw0>0 for small k. Also the couplingu0
must be positive, otherwise the pure system would under
first order phase transition.
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The critical behavior of the model in Eq.~4! with m>1
has been investigated@20,21,23# using the renormalization
group~RG! approach@24#. We are interested in the polyme
limit m→0 of this model interpreting it as a model for poly
mers in a disordered medium. Note that this limit is n
trivial. For the caseu0Þ0, v0Þ0, w050 the ‘‘naive’’ RG
analysis leads to controversial results about the absence
stable fixed point and thus to the absence of the second o
phase transition@5#. As noticed by Kim@6#, once the limit
m,n→0 has been taken, theu0 andv0 terms are of the same
symmetry, and an effective Hamiltonian with one coupli
of O(m,n50) symmetry results. This leads to the concl
sion that weak quenched uncorrelated disorder is irrelev
for polymers as long asv0,u0.

Our present analysis takes these symmetry properties
account. In the case of the Hamiltonian with a term for lon
range-correlated disorder, Eq.~4!, we pass to an effective
Hamiltonian@13# with only two couplingsU05u02v0 and
w0 ~in what follows below we will keep the notationu0 for
this new couplingU0). In discrete momentum space th
effective Hamiltonian reads

Heff5(
k

(
a

n
1

2
~m01k2!~fW k

a!21
u0

4!

3(
a

n

(
k1k2k3k4

d~k11k21k31k4!

3~fW k1

a
•fW k2

a !~fW k3

a
•fW k4

a !2
w0

4! (
ab

n

(
kk1k2k3k4

ukua2d

3d~k11k21k!d~k31k42k!~fW k1

a
•fW k2

a !

3~fW k3

b
•fW k4

b !, m,n→0. ~7!

Here, thed(k) represent products of Kronecker symbols a
the notation (fW •fW ) implies a scalar product. Note that th
w0 term introduces interactions between the replicas
contains the power of an internal momentum. Again, it m
be shown that fora5d in the limit m,n→0 theu0 andw0
terms are of the same symmetry and one is left with
O(mn50)-vector model with only one coupling (u02w0).

III. THE RENORMALIZATION

In order to extract the critical behavior of the model, w
use the field-theoretical RG method. We choose the mas
field theory scheme with renormalization at nonzero m
and zero external momenta@25# that leads to Callan-
Symanzik equations for the renormalized one-particle ir
ducible vertex functionsGR

(M ) . In our case the renormaliza
tion conditions@21# are written both in fixedd and a. The
renormalized massm and renormalized couplingsu,w are
defined by

m25GR
(2)~k,m2,u,w!uk50 ,

m42du5GR,u
(4) ~$k%,m2,u,w!uk50 ,
2-3
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TABLE I. Fixed points and stability matrix eigenvalues in the first order of the («,d) expansion.

Fixed Point u* w* v1 v2

Gaussian~G! 0 0 2« 2d
Pure SAW~P! « 0 « «/22d

Long-range~LR! 2d2

(«2d)
2

d(«22d)
(«2d)

1
2 $«24d6A«224«d18d2%
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m42aw5GR,w
(4) ~$k%,m2,u,w!uk50 .

Here,GR,u
(4) and GR,w

(4) are the contributions to the four-poin

vertex functionGR
(4) that correspond tou- andw-term sym-

metry, respectively. Asymptotically close to the critical po
theM-point renormalized vertex functions obey the homog
neous Callan-Symanzik equation@24#,

H m
]

]m
1(

i
bv i

~$v j%!
]

]v i

2
M

2
gf~$v j%!J GR

(M )~$k%,m2,$v j%!50, ~8!

herev i5u,w. The change of the couplingsu,w under renor-
malization defines a flow in parametric space that is g
erned by the correspondingb functionsbu(u,w), bw(u,w).
The fixed pointsu* ,w* of this flow are given by the solu
tions of the system of equations:bu(u* ,w* )
50, bw(u* ,w* )50. The stable fixed point is defined as th
fixed point where the stability matrix

Bi j 5
]bv i

]v j
~9!

possesses eigenvaluesv i with positive real parts. The acces
sible stable fixed point corresponds to the critical point of
system. The fixed point is accessible if it can be reac
along flow lines starting from allowed initial valuesu0 ,w0
>0. At the fixed point we define the correlation length a
pair correlation function critical exponentsn andh by

n21522gf~u* ,w* !2gf2~u* ,w* !, ~10!

h5gf~u* ,w* !, ~11!

wheregf2 is the exponent that corresponds to the two-po
vertex functionM52 with a f2 insertion. Other critical ex-
ponents may be obtained from familiar scaling laws. F
example, for the susceptibility exponentg one has

g5n~22h!. ~12!

According to the RG prescriptions given above, the R
functions are obtained in the form of a series in the ren
malized couplings. In the one-loop approximation the res
reads@13#

bu52«Fu2
4

3
u2I 1G2d2uwF I 21

1

3
I 4G1~2d2«!

2

3
w2I 3 ,

~13!
04110
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bw52dFw1
2

3
w2I 2G1«

2

3
@wuI12w2I 4#, ~14!

gf25«
u

3
I 12d

w

3
I 2 , gf5d

w

3
I 4 . ~15!

Here, I i are one-loop integrals that depend on the space
mensiond and the parametera:

I 15E dqW

~q211!2
, I 25E dqW qa2d

~q211!2
,

I 35E dqW q2(a2d)

~q211!2
, I 45

]

]k2 F E dqW qa2d

@q1k#211
G

k250

.

~16!

Note that contrary to the usualf4 theory thegf function in
Eq. ~15! is nonzero already in one-loop order. This is due
the k dependence of the integralI 4 in Eq. ~16!.

There are two ways to proceed in order to obtain
qualitative characteristics of the critical behavior of t
model. One can consider the polynomials in Eqs.~13! and
~14! for fixed a,d and look for the solution of the fixed poin
equations. It is easy to check that these one-loop equat
do not have any stable accessible fixed points ford,4. The
other scheme to evaluate these equations is a double ex
sion in «542d and d542a as proposed by Weinrib an
Halperin @20#. Formerly @13#, we exploited this up to the
linear approximation. For completeness, we here note th
results. Substituting the loop integrals in Eqs.~13!–~15! by
their expansion in«542d and d542a, one obtains the
three fixed points given in Table I. We may draw the follow
ing conclusions from these first order results: Three disti
accessible fixed points are found to be stable in differ
regions of the (a,d) plane. The Gaussian~G! fixed point, the
pure ~P! SAW fixed point and the LR disorder SAW fixe
point. The corresponding regions in thea,d plane are
marked by I, II, and III in Fig. 1. In the region IV no stabl
fixed point is accessible.

For the correlation length critical exponent of the SAW
one finds distinct valuesnpurefor the pure fixed point andnLR
for the long-range fixed point. Taking into account that t
accessible values of the couplings areu.0, w.0, one finds
that the long-range stable fixed point is accessible only
d,«,2d, or d,a,21d/2, a region where power countin
in Eq. ~7! shows that the disorder is irrelevant. In this sen
the region III for the stability of the LR fixed point is un
physical. Formally, the first order results ford,4 read
2-4
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n5H npure51/21«/16, d,«/2,

nLR51/21d/8, «/2,d,«.
~17!

Thus, in this linear approximation the asymptotic behavior
polymers is governed by a distinct exponentnLR in the re-
gion III of the parameter plane (a,d).

Something similar happens if the«,d expansion is applied
to study models ofm-vector magnets with long-range
correlated quenched disorder. For comparison, using the
sults of Weinrib and Halperin@20# we get the phase diagram
presented form52 in the Fig. 2. Although the critical be
havior of the long-range-correlated universality class appe
there fora,d where it is relevant by power counting~region
III in the Fig. 2! this region in thed-a plane is separated

FIG. 1. The critical behavior of a polymer in a medium wi
long-range-correlated disorder in different regions of the (d,a)
plane as predicted by the first order («,d) expansion. Region I
corresponds to the Gaussian random walk behavior, in the regio
scaling behavior is the same as in the medium without disorde
region III the ‘‘long-range’’ fixed point LR is stable and the scalin
laws for polymers are altered, in region IV no accessible sta
fixed points appear; this may be interpreted as the collapse o
chain.

FIG. 2. The critical behavior of them52-magnet in a medium
with long-range-correlated disorder in different regions of the (d,a)
plane as predicted by the first order («,d) expansion. Region I
corresponds to the mean field behavior, in the region II the crit
exponents are the same as in the medium with uncorrelated d
der, in III the fixed point LR is stable, in IV no accessible stab
fixed points appear.
04110
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from the critical behavior of the O(m52) universality class
by a region, where no accessible stable fixed points
present~IV in Fig. 2!. It means that also in the case of ma
nets, as well as for polymers the first-order («,d) expansion
leads to a controversial phase diagram~compare Figs. 1 and
2!. So our first order results should be considered as pu
qualitative and in order to obtain a clear picture and m
reliable information, we proceed to higher order calculatio

IV. THE RESUMMATION AND THE RESULTS

Fortunately, to investigate the two-loop approximation
a fixedd anda approach we need not recalculate the int
mediate expressions of perturbation theory for the ver
functions. Instead, we may make use ofm→0 limit of the
appropriatem-vector model, investigated recently@21#. Start-
ing from the two-loop expressions of Ref.@21# for the RG
functions of them-vector magnet with long-range-correlate
disorder and applying the symmetry arguments@6,13# for the
polymer limit m50 as explained in Sec. II we get the fo
lowing expressions for thed53 RG functions of the mode
in Eq. ~7!:

bu~u,w!52u1u22@3 f 1~a!2 f 2~a!#uw2 95
216u3

1 1
8 b2~a!u2w2@b3~a!1 1

4 b6~a!#uw2

1 f 3~a!w21b5~a!w3, ~18!

bw~u,w!52~42a!w2@ f 1~a!2 f 2~a!#w21
uw

2

1b10~a!w32
23

216
u2w1

1

4
b12~a!uw2 ~19!

gf~u,w!5 1
2 f 2~a!w1 1

108u21c1~a!w22 1
4 c2~a!uw,

~20!

gf2~u,w!5 1
4 u2 1

2 f 1~a!w2 1
16 u22c3~a!w21 1

4 c4~a!uw.
~21!

Here, the coefficientsf i(a) are expressed in terms of th
one-loop integrals in Eq.~16!, bi(a) and ci(a) originate
from two-loop integrals and are tabulated in Ref.@21# for d
53 and different values of the parametera in the range 2
<a<3. The series are normalized by a standard chang
variablesu→(3u/4)I 1 ,w→(3w/4)I 1, so that the coefficients
of the termsu,u2 in bu become 1 in modulus.

The RG functions listed above have the form of a div
gent series, with zero radius of convergence@26#, familiar to
the theory of critical phenomena@24#. If the nature of the
divergence is such that the series is asymptotic, then
situation is, at least in principle, controllable: in this case
good estimate for the sum of the series is obtained by ke
ing a certain number of the first terms~‘‘optimal trunca-
tion’’ ! or applying an appropriate resummation procedure

For the case of the pure three-dimensionalf4 theory it is
known that the perturbation series is asymptotic, and Bo
summability in three dimensions has been proven@27#. The
situation of the random-site Ising model is less satisfact
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than for the pure system@14#. For instance, the asymptoti
parameter in the disordered system isA« instead of«, and
theb functions, computed at two loops show no stable fix
points. Bray et al. @28# and McKane @29# studied the
asymptotic expansion for the free energy of the random-
Ising model in the zero-dimensional case, and the model
found to be non-Borel summable. However, recently@30# the
Borel summability of the perturbation expansion for t
zero-dimensional disordered Ising model was proven ana
cally, provided that the summation is carried out in tw
steps: first, in the coupling of the pure Ising model and s
sequently in the variance of the quenched disorder.

In our case, the summability of the series in Eq.~18! is
open. Nevertheless, we apply various kinds of resumma
techniques@34#, in order to obtain reliable quantitative re
sults for the problem under consideration and to check
stability of these results.

A. Chisholm-Borel resummation

First, we employ a simple two-variable Chisholm-Bor
resummation technique@31#. For our problem this turns ou
to be the most effective one. The resummation proced
consists of several steps:~i! starting from the initial RG func-
tion f in the form of a truncated series@34# in the variablesu
andw, one constructs its Borel image:

f 5(
i , j

ai j u
iwj→(

i , j

ai j ~ut! i~wt! j

G~ i 1 j 11!
,

where G(x) is the Euler’s gamma function;~ii ! the Borel
image is extrapolated by a rational Chisholm@32,33# approx-
imant @K/L#(ut,wt) that is defined as the ratio of two poly
nomials both in the variablesu and w of degreesK and L
o

an
fo
o

th
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such that the truncated Taylor expansion of the approxim
is equal to that of the Borel image of the functionf; ~iii ! the
resummed functionf res is then calculated as the invers
Borel transform of this approximant:

f res5E
0

`

dt exp~2t !@K/L#~ut,wt!.

There are a lot of possibilities to choose a Chisholm appr
imant in two variables. The most natural way is to constr
it such that, if any ofu or w is equal to zero, it leads to th
familiar results for the reduced model. Here, for the Bor
images of theb functions Eqs.~18! and~19! we have chosen
the following approximants with linear denominators:

FIG. 3. The Chisholm-Borel resummed 3Db functions in the
two-loop approximation ata52.9. The flat surface corresponds
the bw function. The resummation restores the presence of a p
SAW fixed point (u* 51.63,w* 50) and leads to a new stabl
‘‘long-range-correlated’’ fixed point. The coordinate box is chos
to show the stable LR fixed point (u* 54.13,w* 51.47) on the
face of the box.
bu~u,w,t !chis5
a1,0ut1a2,0u

2t21a1,1uwt21a0,2w
2t21a2,1u

2wt31a1,2uw2t3

11b1,0ut1b0,1wt
,

bw~u,w,t !chis5
c0,1wt1c0,2w

2t21c2,1u
2wt31c1,2uw2t3

11d1,0ut1d0,1wt
. ~22!
he

of
ond-
sta-
a-
Note, that the polynomials in the numerators are chosen t
symmetric in the variablesu,w. In Fig. 3 we show the re-
summed 3Db functions in the (u,w) plane fora52.9. In
addition to the familiar fixed points describing Gaussi
chains and polymers we obtain the stable LR fixed point
polymers in long-range-correlated disorder. For comparis
we depict the nonresummed functions in Fig. 4. Only
Gaussian fixed point (u* 50,w* 50) is obtained without re-
be

r
n,
e

summation. In Fig. 5 we visualize the situation depicting t
lines of zeroes of the resummedb functions ata52.9 in the
(u,w) plane in the region of interest. The intersections
these curves correspond to the fixed points. The corresp
ing values of the stable fixed point coordinates and the
bility matrix eigenvalues for different values of the correl
tion parametera,3 are given in our Table II.

Substituting Eqs.~20! and~21! into Eqs.~10!–~12! we get
the following expressions:
2-6
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n21~u,w!522
1

4
u1

f 1~a!2 f 2~a!

2
w1

c2~a!2c4~a!

4
uw

1
23

432
u21@c3~a!2c1~a!#w2,

g~u,w!511
1

8
u2

f 1~a!

4
w1

f 2~a!14c4~a!22 f 1~a!

32
uw

2
1

64
u21

f 1
2~a!2 f 1~a! f 2~a!28c3~a!

16
w2. ~23!

This defines the critical exponents byn215n21(u* ,w* )
and g5g(u* ,w* ) at the stable accessible fixed poi
(u* ,w* ). To calculate these exponents in the region wh
the LR fixed point is stable, we again perform a resummat
of the series in Eq.~23!, using the following Chisholm ap
proximants:

FIG. 4. The nonresummed 3Db functions ata52.9. The inter-
section of thebu andbw surfaces with theu-w plane give the fixed
points. Only the Gaussian fixed pointu* 5w* 50 is present with-
out resummation.
04110
e
n

c0,01c0,1wt1c1,0ut1c1,1uwt2

11d1,0ut1d0,1wt
. ~24!

The critical exponenth is obtained from the scaling law in
Eq. ~12!. The numerical values forn, g, andh are listed in
Table II for a52.3, . . .,2.9. Note, that fora53, which cor-
responds to short-range-correlated pointlike defects, the
teractionsu andw become of the same symmetry, so we pa
to one coupling (u-w) and reproduce the well-known value
of the critical exponents for the pure SAW model. The n
merical values corresponding to those listed in Table II are
this case: u* 51.63,n50.59,g51.17,h50.02,v50.64.
As departing from the valuea53 downward to 2 one no-
tices a major increase of the value of the couplingu, so the
results are more reliable fora close to 3. At some valuea
5amarg the LR fixed point becomes unstable. This is e
plained by the following physical interpretation: as noted
the introduction, the casea5d21 ~in our 3D approacha
52) corresponds to straight lines of impurities of rando
orientation, and the absence of stable fixed points fora near
a52 suggests the collapse of the polymer chain in suc
medium.

It is difficult to estimate the accuracy of the numeric
values presented in Table II. On one hand, it is the fi

TABLE II. Stable fixed point of the 3D two-loopb functions,
resummed by the Chisholm-Borel method, the corresponding c
cal exponents, and the stability matrix eigenvalues at various va
of a.

a u* w* n g h v1,2

2.9 4.13 1.47 0.64 1.25 0.04 0.2560.62 i
2.8 4.73 1.68 0.64 1.26 0.04 0.2260.76 i
2.7 5.31 1.81 0.65 1.28 0.03 0.1860.89 i
2.6 5.89 1.87 0.66 1.29 0.03 0.1560.99 i
2.5 6.48 1.89 0.66 1.31 0.02 0.1161.09 i
2.4 7.10 1.87 0.67 1.33 0.01 0.0761.18 i
2.3 7.76 1.84 0.68 1.36 0.01 0.0361.26 i
-
-

es
t

FIG. 5. The lines of zeros of the 3Db func-
tions ~18! and ~19! resummed by the Chisholm
Borel method ata52.9. The dashed line corre
sponds tobu50, the solid lines depictbw50.
The intersections of the dashed and solid lin
give three fixed points shown by filled circles a
u* 50,w* 50 ~G!, u* 51.63,w* 50 ~P!, andu*
54.13,w* 51.47 ~LR!. The fixed point LR is
stable.
2-7
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nontrivial result: in the one-loop approximation at fixe
(d,a) one does not encounter the LR fixed point so o
cannot estimate deviations caused by different orders of
perturbation theory. On the other hand, as is known from
experience with the studies of magnets with long-ran
correlated disorder@21#, the convergence of the resumme
series for the RG functions is worse than in the pure~or the
short-range-correlated! case. The resummed two-loop expa
sions we exploited here give quite reliable estimates for
exponents of SAWs on the pure (d53) lattice@compare our
two-loop valuesn50.59 andg51.17 with the most precise
RG estimates cited just after Eq.~1!#. In the case of the
short-range-correlated diluted magnets the comparison o
cent six-loop results@35# with the two-loop ones@31# brings
about the accuracy of latter of the order of several perce
While for our case no higher order calculations are availa
to test the numerical accuracy of the data in Table II
results clearly confirm the presence of a new stable fi
point LR with critical exponents that differ from those of th
‘‘pure’’ fixed point P.

In order to confirm the quantitative stability of the pictu
we obtained, we have also used different nonsymmetric
proximants forbw instead of the one given in Eq.~22!. As
expected, this approach was less effective in the sense
the region where a stable fixed point could be establis
was reduced and the numerical values differed from th
given in Table II. Nonetheless, the qualitative picture is
same: an LR fixed point exists and is stable in some inte
amarg<a,3.

B. Subsequent resummation

Second, we applied the method of subsequent resum
tion, developed in the context of thed50 dimensional di-
luted Ising model in Ref.@30# and successfully used for th
d53 case in Ref.@35#. Here, the summation was carried o
first in the couplingu and subsequently inw. Starting from
the b functions in Eqs.~18! and ~19! we rewrite them as
series in the variablew:

bu~u,w!52u1u22
95

216
u31wS u@ f 2~a!23 f 1~a!#

1
b2

8
u2D1w2S f 3~a!2uFb3~a!1

b6~a!

4 G D
1b5~a!w3,

bw~u,w!5wS a241
u

2
2

23

216
u2D

1w2S f 2~a!2 f 1~a!1
b12~a!

4
uD1b10~a!w3.

We first perform a Pade´-Borel resummation of the coeffi
cients at different powers ofw in the variableu, where it is
possible. This results in a series of the form:

f ~u,w!5(
i

Ai~u!wi . ~25!
04110
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e
e
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The coefficientsAi are some functions ofu. Finally, the se-
ries ~25! are resummed in the variablew. While we do not
expect any high accuracy from this method, as far as
applicability has not been proven for our problem, again
presence of a stable fixed point LR foramarg<a,d in this
case confirms the stability of a new type of critical behavi

We note that in addition to the above procedures we h
tried a Pade´-Borel approximation for the summation of th
RG functions. To treat the two variable case we used
representation in terms of a resolvent series@36,33# in a
single auxiliary variable. However, no fixed points withw
Þ0 were found in the region of interest. But note that ev
for the weakly diluted quenched Ising model this proced
does not lead to stable fixed points in the three-loop appr
mation @14#.

C. Interpretation of the numerical results

We may summarize and interpret our results as follow
~i! A new stable fixed point~LR! for polymers in long-

range-correlated disorder is found ford53, a,d, leading to
critical exponents that are different from those of the pu
model;

~ii ! There is a marginal valueamarg for the parametera,
below which the stable fixed point is absent, indicating
chain collapse of the polymer for disorder that is strong
correlated.

~iii ! The critical exponentn increases with decreasing pa
rametera, like in the Weinrib and Halperin case. But not
that the relationn52/a does not hold. Physically this mean
that in weak long-range-correlated disorder (a.amarg) the
polymer coil swells with increasing correlation of the diso
der. The self-avoiding path of the polymer has to take lar
deviations to avoid the defects of the medium.

V. CONCLUSIONS

In the present work, we have analyzed the scaling beh
ior of polymers in media with quenched defects that are c
related with a correlation that decays like;1/xa for large
separationsx. This type of disorder is known to be releva
in magnetic systems@20,21#, but the question about its rel
evance in the polymer problem was so far not answered
this end we applied the field-theoretical RG approach, a
performed renormalization for fixed mass and zero exter
momenta@25#. In our study we take special care of the sym
metry properties of the effective Hamiltonian of the syste
@6#. Formerly@13# we performed calculations up to the line
approximation, using a double«,d expansion, as propose
for the magnetic problem in the work of Weinrib and Hal
erin @20#. While already this study indicated the possibility
a new type of critical behavior in such a system, it predic
such behavior for an unphysical range of parameters. A m
sophisticated investigation at higher order of the perturba
series was needed to confirm the existence of a distinct p
mer scaling behavior for long-range-correlated disorder.

We use two-loop expressions for the RG functions t
were recently obtained form-component systems in the fixe
(d,a) approach@21# and apply appropriate resummatio
techniques. This way we confirm that in a medium w
2-8
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TABLE III. The correction-to-scaling exponentsv for the phase transition in the 3Dm-vector model with
m51,2,3.

a 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

v(m51) 0.80 0.81 0.83 0.87 0.94 1.14 1.07 0.87 0.71 0.6
v(m52) 1.15 1.08 0.93 0.86 0.81 0.68 0.59 0.57 0.55 0.5
v(m53) 0.88 0.83 0.76 0.67 0.62 0.61 0.60 0.60 0.59 0.6
th

s
.,
r

m

n
ng

po-
u-

ith

ula-

ini-
ed

es
long-range-correlated quenched disorder the swelling of
polymer coil is governed by a distinct exponentnLR that
increases when the correlation of the disorder is increa
~i.e., a is decreased!. When the correlation is too strong, i.e
a is below some marginal valueamarg.'2, then a crossove
to the collapse of the polymer is predicted.

APPENDIX

Here, we turn our attention to the 3D magnetic syste
Recently Ballesteros and Parisi@37# presented Monte Carlo
simulations of the site-diluted Ising model in three dime
sions in the presence of quenched disorder with long-ra
tio

,

r
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rd
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correlations. The values of the corrections-to-scaling ex
nents are of great interest in the interpretation of such sim
lations. In previous work, dedicated to 3D magnets w
long-range-correlated disorder@16,17,21# these exponents
have not been calculated. Here we carry out these calc
tions based on theb functions of the model Eq.~4! in the
two-loop approximation, as presented in Ref.@21#.

The correction-to-scaling exponent is defined as the m
mal stability matrix eigenvalue in the stable accessible fix
point. We carry out the investigation in new variabl
(u,v,w)→(u,v,v1w), as proposed by Dorogovtsev@17#
and perform the Pade´-Borel resummation of theb functions.
The results are presented in Table III.
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